S(r,h) = 4 Pi r^2 + 2 Pi r hand the volume of the tank is
V(r,h) = 4 Pi/3 r^3 + Pi r^2 h.Then if lambda is a Lagrange multiplier, the solution will occur for values of (r,h,lambda) where
grad(S) = lambda grad(V)
V(r,h) = 500.
Solving these equations simultaneously, we find that the minimum surface area occurs when (r,h)=( (375/Pi)^(1/3), 0).
You asked me to investigate the problem of building a cylindrical storage tank that holds 500 cubic meters of liquid. In an attempt to minimize our production costs, I attempted to design a tank that requires the least possible surface area.
The problem of minimizing some function (like our surface area) while satisfying some constraint (such as a constant volume) is a standard problem in multivariable calculus. The usual approach is the so-called "Method of Lagrange Multipliers." I can supply the details if need be, but perhaps it is sufficient to note that this method allows us to look for the radius and length of a tank that has the least surface area. The general idea is to stay on a curve corresponding to the volume constraint, and look for maximum and minimum values of the cost function along this curve.
Upon completing my analysis, I was surprised to find that the tank that minimizes surface area would be a spherical tank of radius 4.92 meters. Unfortunately, our customer explicitly specified a cylindrical tank. I recommend contacting the customer to
Sincerely,
P. Lagrange