[HOME] Abstract and Contents
Next: List of all figures
Previous: Acknowledgments

References

V.I. Arnol'd, "Small denominators I", Trans. Amer. Math. Soc. 2nd. series, 46:213-284, 1965.

W.-J. Beyn, "The numerical computation of connecting orbits in dynamical systems", IMA J. Num. Anal. 9:379-405, 1990.

A. Back, J. Guckenheimer, M.R. Myers, F.J. Wicklin, and P.A. Worfolk, "DsTool: Computer assisted exploration of dynamical systems", Notices Amer. Math. Soc. 39(4):303-309, 1992. Information and software.

H.W. Broer, H.M. Osinga, and G. Vegter, "On the computation of normally hyperbolic invariant manifolds", in H.W. Broer et al. (eds.), Progress in Nonlinear Differential Equations and Their Applications 19:423-447, Birkhäuser Verlag, Basel / Switzerland, 1996.

H.W. Broer, H.M. Osinga, and G. Vegter, "Algorithms for computing normally hyperbolic invariant manifolds", to appear in Z. angew. Math. Phys. 48, 1997.

F. Bai, A. Spence, and A.M. Stuart, "The numerical computation of heteroclinic connections in systems of gradient partial differential equations", SIAM J. Appl. Math. 53(3):743-769, 1993.

S.-N. Chow, C. Li, and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University press, 1994.

M. Dellnitz and A. Hohmann, "The computation of unstable manifolds using subdivision and continuation", in H.W. Broer et al. (eds.), Progress in Nonlinear Differential Equations and Their Applications 19:449-459, Birkhäuser Verlag, Basel / Switzerland, 1996.

M.J. Friedman and E.J. Doedel, "Numerical computation and continuation of invariant manifolds connecting fixed points", SIAM J. Numer. Anal. 28(3):789-808, 1991.

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, second printing, 1983.

J. Guckenheimer and P. Worfolk, "Dynamical systems: Some computational problems", in D.~Schlomiuk, editor, Bifurcations and Periodic Orbits of Vector Fields, pages 241-277,

D. Hobson, "An efficient method for computing invariant manifolds of planar maps", J. Comput. Phys. 104(1):14--22, 1993.

M.W. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, volume 583 of Lecture Notes in Mathematics, Springer, 1977.

A.J. Homburg, D. Sands, and R. de Vilder, "Computing invariant sets", Technical Report 57/96, Schwerpunktprogramm Danse der DFG, 1996.

M.E. Johnson, M.S. Jolly, and I.G. Kevrekidis, "Two-dimensional invariant manifolds and global bifurcations: some approximation and visualization studies", proceedings of the conference on Numerical Dynamics, Georgia Institute of Technology, December 1995; submitted to Annals of Numerical Mathematics, 1995.

H.E. Lomelí and J.D. Meiss, "Quadratic volume preserving maps", in preparation, 1997.

G. Moore, "Computation and parametrization of periodic and connecting orbits", IMA J. Numer. Anal. 15:245-263, 1995.

H.M. Osinga, Computing invariant manifolds: An implementation of the graph transform , PhD thesis, Groningen University, 1996.

T.S. Parker and L.O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer, 1989.

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer, 1982.

M. Phillips, S. Levy and T. Munzner, "Geomview: An Interactive Geometry Viewer", Notices of the Amer. Math. Soc. 40:985-988, 1993. Information and software.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C: the Art of Scientific computing, Cambridge University Press, 2 edition, 1992.

O. Sosnovtseva, U. Feudel, J. Kurths, and A. Pikovsky, "Multiband strange nonchaotic attractors in quasiperiodically forced systems", Physics Letters A 218:255--267, 1996.

C. Simó, "On the analytical and numerical approximation of invariant manifolds", in D. Benest and C. Froeschlé (eds), Les Méthodes Modernes de la Mécanique Céleste, pages 285--329, Goutelas, 1989.

E. Tabacman, Visualization of stable and unstable manifolds of diffeomorphisms, Technical Report GCG60, The Geometry Center, Minneapolis, 1993.

M.A. Taylor, M.S. Jolly, and I.G. Kevrekidis, "SCIGMA: Stability computations and interactive graphics for invariant manifold analysis", Technical report, Dept. of Chem. Eng. Princeton University, 1989.

R. Thurman and P. Worfolk, The geometry of halo orbits in the circular restricted three-body problem, Technical Report GCG95, The Geometry Center, Minneapolis, 1996.

P. Worfolk, private communications, May 1997.

Z. You, E.J. Kostelich, and J.A. Yorke, "Calculating stable and unstable manifolds", Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1(3):605--623, 1991.


Next: List of all figures
Previous: Acknowledgments

[HOME] Abstract and Contents

Written by: Bernd Krauskopf & Hinke Osinga
Created: May 27 1997 --- Last modified: Fri May 30 19:56:54 1997